Photoacoustic Tomography: Omniscale Imaging from Organelles to Patients by Ultrasonically Beating Optical Diffusion

Lihong V. Wang
California Institute of Technology
Wednesday, November 8
1:00 – 2:00 pm
SEH, B1220


Photoacoustic tomography (PAT) has been developed for in vivo functional, metabolic, molecular, and histologic imaging by physically combining optical and ultrasonic waves. Broad applications include early-cancer detection and brain imaging. High-resolution pure optical imaging—such as confocal microscopy, two-photon microscopy, and optical coherence tomography—is limited to superficial imaging within the optical diffusion limit (~1 mm in the skin) in scattering tissue. By synergistically combining light and sound, PAT in the form of either photoacoustic computed tomography or photoacoustic microscopy provides deep penetration at high ultrasonic resolution and high optical contrast. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (or small-animal organisms) with consistent contrast. The annual conference on PAT has become the largest in SPIE’s 20,000-attendee Photonics West since 2010. Also, wavefront engineering and compressed ultrafast photography (world’s fastest camera) will be touched upon.

Dr. SongLihong Wang is Bren Professor of Medical and Electrical Engineering at California Institute of Technology. His book entitled “Biomedical Optics: Principles and Imaging” won the Goodman Book Writing Award. He has published 470 peer-reviewed journal articles and delivered 460 invited talks. His Google Scholar h-index and citations have reached 114 and 53,000, respectively. His laboratory was the first to report functional photoacoustic tomography, 3D photoacoustic microscopy, photoacoustic endoscopy, photoacoustic reporter gene imaging, the photoacoustic Doppler effect, the universal photoacoustic reconstruction algorithm, and CUP. He is the Editor-in-Chief of the Journal of Biomedical Optics. He received NIH Director’s Pioneer and NIH Director’s Transformative Research awards. He also received the OSA C.E.K. Mees Medal, IEEE Technical Achievement Award, IEEE Biomedical Engineering Award, SPIE Britton Chance Biomedical Optics Award, and Senior Prize of the International Photoacoustic and Photothermal Association. An honorary doctorate was conferred on him by Lund University, Sweden.